BFS is easy to understand if explained in Java, than C. The advantage being you can focus on the algorithm rather than the intricacies of the implementation.
Code: BFSDemo.java
Algorithm:
The algorithm might look quite vague. Just follow the code, it will be easy to understand.
- Initialize queue (q)
- Push root node to queue
- While queue not empty
- Dequeue n
- If n == required_node, return n;
- foreach vertices v of n
- if v is visited, continue
- else enque v
- return null;
The algorithm might look quite vague. Just follow the code, it will be easy to understand.
Code: BFSDemo.java
package com.example;
import java.util.ArrayList;
import java.util.List;
import java.util.Queue;
import java.util.concurrent.ConcurrentLinkedQueue;
public class BFSDemo {
// define node here
static class Node {
int value;
boolean visited = false; // optional
List vertices = new ArrayList<>();
public Node(int value) {
super();
this.value = value;
}
public void addVertex(Node n) {
vertices.add(n);
}
@Override
public String toString() {
return "Node [value=" + value + ", visited=" + visited
+ ", vertices=" + vertices + "]";
}
};
public static Node find(Node root, int element) {
// #1: Initialize queue (q)
Queue q = new ConcurrentLinkedQueue<>(); // some queue
// implementation
// #2: Push root node to queue
q.add(root);
// #3: While queue not empty
while (!q.isEmpty()) {
// #:4 Dequeue n
Node n = q.poll();
// visit this node
n.visited = true;
// #5: If n == required_node, return n;
if (n.value == element)
return n;
// #5: foreach vertices v of n
for (Node v : n.vertices) {
// #6: if v is visited, continue
if (v.visited)
continue;
// #7: else enque v
q.add(v);
}
}
// #8: return null;
return null; // cannot find element
}
public static void main(String[] args) {
// create graph/tree
Node n1 = new Node(1);
Node n2 = new Node(2);
Node n3 = new Node(3);
Node n4 = new Node(4);
Node n5 = new Node(5);
// call traverse
n1.addVertex(n2);
n1.addVertex(n3);
n3.addVertex(n4);
n3.addVertex(n5);
Node found = find(n1, 4);
System.out.println(found);
// Node [value=4, visited=true, vertices=[]]
found = find(n1, 7);
System.out.println(found);
// null
}
}
This logic is same for trees. The difference being: - Each node has only 2 children.
- No need for visited flag in node.
thanks man !! Appreciate it
ReplyDeleteThanks Nikhil!
DeleteThis comment has been removed by the author.
ReplyDeleteyour code is not working. 2 errors occurred.
ReplyDeletethis is nice blog. For more on these topics, visit here.. Breadth First Search (BFS) and Depth First Search (DFS)
ReplyDelete